
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 2, APRIL 2022 923

MultiLive: Adaptive Bitrate Control for Low-Delay
Multi-Party Interactive Live Streaming
Ziyi Wang , Yong Cui , Member, IEEE, Xiaoyu Hu, Xin Wang , Member, IEEE,

Wei Tsang Ooi, Member, IEEE, Zhen Cao, and Yi Li

Abstract— In multi-party interactive live streaming, each user
can act as both the sender and the receiver of a live video stream.
Designing adaptive bitrate (ABR) algorithm for such applications
poses three challenges: (i) due to the interaction requirement
among the users, the playback buffer has to be kept small to
reduce the end-to-end delay; (ii) the algorithm needs to decide
what is the bitrate to receive and what is the set of bitrates
to send; (iii) the delay and quality requirements between each
pair of users may differ, for instance, depending on whether
the pair is interacting directly with each other. To address these
challenges, we first develop a quality of experience (QoE) model
for multi-party live streaming applications. Based on this model,
we design MultiLive, an adaptive bitrate control algorithm for the
multi-party scenario. MultiLive models the many-to-many ABR
selection problem as a non-linear programming problem. Solving
the non-linear programming equation yields the target bitrate for
each pair of sender-receiver. To alleviate system errors during
the modeling and measurement process, we update the target
bitrate through the buffer feedback adjustment. To address the
throughput limitation of the uplink, we cluster the ideal streams
into a few groups, and aggregate these streams through scalable
video coding for transmissions. We also deploy the algorithm
on a commercial live streaming platform that provides such
services for more than 2300 users. The experimental results
show that MultiLive outperforms the fixed bitrate algorithm,
with 2-5× improvement in average QoE. Furthermore, the end-
to-end delay is reduced to around 100 ms, much lower than the
400 ms threshold recommended for video conferencing.

Index Terms— Multi-party interactive live streaming, adaptive
bitrate control, available bandwidth measurement.

Manuscript received March 23, 2020; revised April 23, 2021 and
September 23, 2021; accepted November 14, 2021; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor J. Shin. Date of publication
December 1, 2021; date of current version April 18, 2022. This work was
supported in part by the National Key Research and Development Program
of China under Grant 2018YFB1800303, in part by the National Natural
Science Foundation of China (NSFC) under Project 6213000078, and in part
by the NExT++ Research established by the National Research Foundation,
Prime Minister’s Office, Singapore, under its IRC@SG Funding Initiative.
(Corresponding author: Yong Cui.)

Ziyi Wang, Yong Cui, and Xiaoyu Hu are with the Department of Computer
Science and Technology, Tsinghua University, Beijing 100084, China (e-mail:
wangziyi0821@gmail.com; cuiyong@tsinghua.edu.cn; chaoese@gmail.com).

Xin Wang is with the Department of Electrical and Computer Engineering,
State University of New York at Stony Brook, Stony Brook, NY 11794 USA
(e-mail: x.wang@stonybrook.edu).

Wei Tsang Ooi is with the School of Computing, National University of
Singapore, Singapore 117417 (e-mail: ooiwt@comp.nus.edu.sg).

Zhen Cao is with Huawei Technologies Company Ltd., Beijing 100085,
China (e-mail: zhen.cao@huawei.com).

Yi Li is with Beijing Powerinfo Company Ltd., Beijing 100080, China
(e-mail: tiger_li@263.net).

Digital Object Identifier 10.1109/TNET.2021.3129481

I. INTRODUCTION

L IVE streaming platforms, such as YouTube Live and
Twitter’s Periscope, have attracted millions of daily active

users [1]–[3]. Since user engagement increases the revenue,
these platform providers are increasingly interested in sup-
porting interactive live streaming experience for their users,
leading to multi-party interactive live video streaming as an
emerging class of applications. In such an application, a user
not only acts as a source of video, but also receives one or
more streams from other users in the same session simul-
taneously. An example is collaborative talent show, where
various geographically distributed online streamers can per-
form the arts of singing, acting, playing instruments, or other
activities together and interact with each other by exchang-
ing streams [4], [5]. Platforms that support such application
(e.g., Inke.tv [6] and Douyu.tv [7]) have attracted hundreds of
millions of users in recent years.

Three challenges arise from this new class of applications.
First, applications such as collaborative talent show require
a much tighter synchronization among the users. Schuett [8]
reported a delay above 30 ms would disrupt the tempo, but a
delay of up to 70 ms can be tolerated. This delay requirement
is stricter than other multi-party live applications, such as
multi-party video conferencing, where some existing work has
achieved a tolerable delay of around 400 ms [9]. Such low
tolerance to end-to-end delay means that the buffer occupancy
(i.e., buffering delay) has to be kept small at the sender, server,
and receiver. This, however, will increase the chance of buffer
underflow and stall in the presence of network jitters and
inaccurate throughput estimation. The challenge here is how
to keep the buffer occupancy low without playback stall.

Second, given the heterogeneity of user devices and network
conditions, it is important for a receiver to obtain a stream
rate best suited for its requirement to maximize its quality
of experience (QoE). There are many existing studies on
receiver-driven adaptive bitrate (ABR) algorithms [10]–[15]
that address this issue. Since each receiver is also a sender,
however, a new question that arises here is: at what bitrates
should each sender encode its video stream to meet the
requirement of the receivers? Many existing solutions, in the
context of multi-party video conferencing, rely on the use of a
transcoding server (e.g., [16]–[19]), in which case the sender
only needs to send a single stream at a high-enough bitrate
and the server transcodes the stream to the required bitrate
for the receiver. Such a solution not only requires additional

1558-2566 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 16,2022 at 05:23:37 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8174-0593
https://orcid.org/0000-0002-5171-739X
https://orcid.org/0000-0001-8639-3818
https://orcid.org/0000-0002-1252-1351

924 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 2, APRIL 2022

computation in the cloud with a higher infrastructure cost,
but also introduces additional delay through the transcoding
step. We therefore consider the scenario where the server only
relays the stream without transcoding and the sender encodes
the video into multiple streams at the bitrates required by the
receivers. Since the uplink of a sender is likely a bottleneck,
a sender can only generate a limited number of streams, which
may not meet the needs of every receiver.

Third, for a receiver, the delay and quality requirements
may differ for each sender. Users may have different QoEs or
priorities, and set their preferences in advance. For instance,
in a collaborative talent show, the end-to-end delay between
a performer and a spectator can be higher than between two
performers; This spectator may require higher video quality
from the performers than that of other spectators. Each user
has multi-dimensional requirements and interacts with other
users. How to meet the requirements of all users at the same
time becomes a challenge.

In this paper, we present a system for multi-party live
streaming to address the challenges above. Our system has
the following salient features. First, to minimize delay and
stall duration, the streamer can increase or decrease the
playback speed. Second, to more effectively utilize the uplink
bandwidth, we adopt scalable video coding (SVC) to aggre-
gate multi-rate streams and send them to the server, which
then distributes different layers to different receivers. Third,
we develop a QoE model that takes into account different
requirements of multi-party interactive live streaming appli-
cations. By assigning weights to different terms, the system
is able to personalize the preferences between each pair of
users. Finally, we introduce the core component to this system,
MultiLive, which is an adaptive bitrate control algorithm that is
run centrally in the server, considering the various constraints
in a many-to-many scenario as a non-linear programming
problem that maximizes the overall QoE. MultiLive period-
ically solves the non-linear programming problem to obtain
the target bitrate for each sender and each receiver and, in the
interim, uses a feedback control algorithm to adjust the target
bitrate to react to fluctuating throughput and variations in video
encoding rate. The target bitrates are clustered into what the
senders and the server actually send while minimizing the QoE
loss. To the best of our knowledge, we are the first to design
and implement an adaptive bitrate control algorithm for multi-
party interactive live streaming that considers the many-to-
many ABR problem while maximizing the QoE considering
delay, smoothness, quality, and stall, holistically.

To make full use of the network bandwidth, we propose
an available bandwidth measurement algorithm. It exploits
the unique burst characteristic of keyframes during video
streaming to passively probe the upper limit of the available
bandwidth, based on which future bandwidth can be more
accurately predicted to improve the effectiveness of ABR
algorithm. This is different from existing studies that probe
available bandwidth in a rapidly changing and unstable net-
work environment [20], [21], where additional overhead is
introduced to send dummy traffic or add a measurement proxy.

We implemented the ABR algorithm and the algorithm for
the measurement of available bandwidth within an open-source

video conferencing server, and evaluated their performance
through extensive trace-driven simulations and test bed exper-
iments. We collected and released, as an open dataset, more
than 72 hours of uplink and downlink throughput measure-
ments from live streaming servers.1 In addition, Belgium
4G/LTE dataset [22] is used to test the performance. We also
evaluated the algorithm on a live streaming platform with more
than 2300 users. The results show that MultiLive outperforms
the fixed bitrate algorithm, with 2-5× improvement in average
QoE. When the loss rate is less than 0.5%, we achieved an
end-to-end delay of 50 ms more than 90% of the time for the
experiment on a fast network with propagation delay of 10 ms,
meeting the delay requirement of 70 ms [8].

The rest of the paper is structured as follows. Section II
presents the system architecture. Section III formulates the
problem. Section IV elaborates the details of MultiLive.
Section V introduces our technique for available band-
width measurement. Implementation details are elaborated in
Section VI. Simulation and real test bed evaluation results are
presented in Section VII. Section VIII discusses the related
work. Finally, we conclude the paper in Section IX.

II. SYSTEM ARCHITECTURE

We adopt SVC to provide flexibility in multi-party live
streaming in the presence of heterogeneous user devices and
bandwidths. Actually, there is a tradeoff to consider when
choosing between server-based transcoding and sender-based
SVC. First, transcoding tasks in the cloud need to use elastic
computing resources, which increases the cost of the service
providers as compared to the one with simple video relaying.
The service provider has the motivation to assign the scalable
encoding task to the streamer. As cloud transcoding constitutes
a big portion of the cost of these providers, they have the
incentives to offload and are actually using this approach in
services. Second, with the popularity of live streaming, the
streamers tend to become more and more professional with
the use of many powerful devices and accessories [1]. Many
streamers now use a special equipment to show the details of
their video streaming sessions, and have a motivation to pay
some more computing resources locally [23]. This is a new
way the streamer is engaging with the system. In addition,
some studies have found that current mainstream personal
device processing speeds are already enough for real-time
scalable encoding and decoding of multiple streams [24], [25].

We then present the architecture of our system (See Fig. 1).
The three major logical entities are: the senders, the server,
and the receivers. We only focus on the senders and receivers
that participate in the same live streaming session here. In the
current multi-party interactive live streaming applications, the
number of streamers in a session is in the order of tens or
less. Note that, despite our distinction of senders and receivers,
in practice, the same streamer acts as both a sender and a
receiver.

Each sender generates an SVC-coded, multi-rate, video
stream and transmits it to the server. We adopt a push-based
approach, where a frame is sent as soon as it is generated.

1https://github.com/STAR-Tsinghua/MultiLive_dataset

Authorized licensed use limited to: Tsinghua University. Downloaded on June 16,2022 at 05:23:37 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: MultiLive: ABR CONTROL FOR LOW-DELAY MULTI-PARTY INTERACTIVE LIVE STREAMING 925

Fig. 1. The architecture of multi-party interactive live streaming.

This approach avoids the request-response overhead used in
pull-based approach, commonly used in DASH-based video-
on-demand streaming.

Upon receiving a frame, the server buffers it and relays the
appropriate SVC layers of the frame to each receiver, also
using the push-based approach. The decisions of: (i) what is
the set of bitrates that each sender should produce, (ii) what
is the bitrate that each receiver should receive, are determined
by the server through an adaptive bitrate controller. The adap-
tive bitrate controller takes, as inputs, the uplink throughput
of each sender, the downlink throughput of each receiver, the
state of buffer occupancy at each receiver, and makes these
decisions to maximize the total QoE of each receiver. The
server also additionally collects the state information (buffer
occupancy, downlink throughput, receiver’s preferences for
each sender) from each receiver and disseminates its decision
(the set of bitrates) to the corresponding sender.

The receiver maintains a playback buffer for each sender.
This partitioning of frames from each sender allows the
receiver to manage the priorities and preferences across the
senders (e.g., higher quality for a sender, lower delay for
another). To avoid buffer under/overflow in live streaming,
the receiver may adjust the playback speed. When the buffer
occupancy rises above a high threshold, the receiver plays back
the video at a faster rate to “catch up” and reduce the end-to-
end delay of subsequent frames. When the buffer occupancy
falls below a low threshold, the receiver plays back the video
at a slower rate, to delay the onset of stalls and thus reducing
the duration of stall. Previous studies found that playback
rate changes up to 5% are imperceivable to most users and
it is difficult for users to spot even much higher playback rate
changes [26], [27]. Thus, without degrading the users’ quality
of experience, our dynamic playback adjustment can reduce
the latency as well as avoid rebuffering.

As noted above, we adopt a frame-level granularity in trans-
mission. This approach is commonly used in DASH-based live
streaming system using chunk-encoding in Common Media
Application Format (CMAF). Transmitting, buffering, and
playing back at a frame-level granularity, instead of segment-
level granularity commonly used in video-on-demand systems,
keeps the end-to-end delay small.

To summarize our design decisions, our system architec-
ture supports the following objectives: First, by processing

at a frame-level granularity, adopting push-based transmis-
sion, increasing playback speed when needed, and avoiding
transcoding at the server, the delay is kept small. Second,
using SVC, the sender sends only a single stream to meet the
bandwidth requirements of multiple heterogeneous receivers.
Finally, by optimizing the QoE (through finding the best
bitrate configuration), we maintain a high quality of experience
for the users. This final component is the focus for the
rest of this paper. In the next section, we will first present
some preliminaries and state the optimization problem. This
presentation is followed by Section IV, where we will present
how the system optimizes the QoE.

III. PROBLEM FORMULATION

In this section, we present a model of the network constraint,
buffer occupancy, and QoE. We end this section with a
statement of the optimization problem to be solved at the
server to maximize the QoE. To facilitate our presentation,
the major notations are summarized in Table I.

A. Network Constraint

Let C
up(i)
w denote the average uplink throughput when

sender i sends the w-th frame and C
down(j)
w denote the average

downlink throughput when receiver j receives the w-th frame.
Let Rij

w denote the bitrate of the w-th frame from sender i to
receiver j.

Considering the uplink of the sender i, the total throughput
of the streams it generates must be less than the limit of the
uplink throughput after aggregating the streams with SVC.
Considering the characteristics of clustering and SVC, the
constraints of the uplink can be relaxed as:

max
j

{
Rij

w

} ≤ Cup(i)
w . (1)

Similarly, considering the downlink of the receiver j, the
sum of the bitrates of several streams it receives must be less
than the total downlink throughput:∑

i

Rij
w ≤ Cdown(j)

w . (2)

B. Buffer Model

The buffer in this paper refers to the queue of video frames
to be consumed, used mainly to cope with network jitters. The
senders, server, and receivers each have one or more buffers.
Among them, the receiver’s buffers are directly related to the
playback condition, and are more important for the QoE of the
receiver. So we focus on the receiver’s buffers in our model.

The receiver’s playback buffer contains video frames that
have been received but yet to be played back. We let B

down(ij)
w

be the receiver buffer occupancy (in unit of time) when
receiver j starts to receive the w-th frame of sender i. Let

C
down(ij)
w be the average downlink throughput when receiver

j receives the w-th frame of i. Let Sij
w be the size of the

w-th frame and Dij
w be the duration of the w-th frame. The

time taken to fully receive the w-th frame is Sij
w /C

down(ij)
w .

The buffer occupancy increases by Dij
w seconds after the w-th

Authorized licensed use limited to: Tsinghua University. Downloaded on June 16,2022 at 05:23:37 UTC from IEEE Xplore. Restrictions apply.

926 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 2, APRIL 2022

TABLE I

MAJOR NOTATIONS USED IN THIS PAPER

frame is received and decreases as the receiver plays back the
video. So the evolution of the receiver buffer occupancy level
can be derived as:

B̂
down(ij)
w+1 =

(
Bdown(ij)

w − Sij
w

C
down(ij)
w

)
+

+ Dij
w , (3)

where B̂
down(ij)
w+1 is the target buffer occupancy when receiver j

starts to receive the next frame and (x)+ = max{x, 0}. Note

that if B
down(ij)
w < Sij

w /C
down(ij)
w , the buffer will become

empty while the receiver is still receiving the w-th frame,
leading to stalls (i.e., the receiver’s playback buffer does not
have frames to render). So the first term in the equation above
cannot be negative.

In addition, we consider adjusting the playback speed to
achieve fine-grained delay control, according to the current
buffer occupancy B

down(ij)
w and two thresholds: B

down(ij)
fast and

B
down(ij)
slow . When the buffer occupancy is more than the fast

playback threshold, B
down(ij)
w > B

down(ij)
fast , the receiver plays

back faster to reduce the delay; When the buffer occupancy is

less than the slow playback threshold, B
down(ij)
w < B

down(ij)
slow ,

the receiver slows down the playback to alleviate stall. Let P ij

be the scaling factor that controls the video playing speed from
the sender i to the receiver j, with P ij = 1 means normal
playback. Then the actual duration of video to playback
per second is P ij . The duration of video received from the
downlink per second is C

down(ij)
w /Rij

w . The net consumption
rate of video duration is the difference between the two values.
After fast/slow playback, the video delay changes from Lij

w to
Lij

w′ . The catch-up time we need is (Lij
w − Lij

w′)/(P ij − 1).
Multiplying the catch-up time by the net consumption rate is
the amount of change in the buffer. So the evolution of the
receiver buffer occupancy level considering playback speed
adjustment (P ij �= 1) can be derived as:

B̂
down(ij)
w′ = Bdown(ij)

w −
(

P ij − C
down(ij)
w

Rij
w

)
· L

ij
w − Lij

w′

P ij − 1
.

(4)

Eq. (4) is used to predict the buffer occupancy only if the
fast/slow playback occurs. The playback scaling factor P ij

can be flexibly selected according to actual conditions. In the
case of normal playback, Eq. (3) is used.

C. QoE Model

In multi-party interactive live streaming, the overall session
QoE should be considered at two different levels: (i) the
session QoE should be the weighted sum of each receiver’s
QoE, and (ii) a receiver’s QoE then depends on the factors in
which it receives data from others. We mainly refer to the QoE
defined by Yin et al. [14] and Ahmed et al. [28]. Specifically,
each receiver’s QoE includes the following four aspects:

(1) Cumulative video quality Qij
K : Let q(·) be a non-

decreasing function that maps bitrate Rij
w to the perceived

video quality q(Rij
w). Then the cumulative video quality of

K consecutive frames from sender i to receiver j is:

Qij
K =

K∑
w=1

q(Rij
w). (5)

(2) Cumulative video quality variations V ij
K : From the

receiver’s perspective, frequent bitrate switching is undesir-
able. Therefore, the QoE model should add video quality
variations as penalty. The cumulative video quality variations
of K consecutive frames sent from sender i to receiver j is:

V ij
K =

K−1∑
w=1

|q(Rij
w+1)− q(Rij

w)|. (6)

(3) Cumulative stall duration Eij
K : When the buffer is

drained out, a stall occurs and deteriorates the receiver’s QoE.
Therefore, the stall duration should also be a penalty in the
QoE model. The cumulative stall duration of K consecutive
frames sent from sender i to receiver j is:

Eij
K =

K∑
w=1

(
Sij

w

C
down(ij)
w

−Bdown(ij)
w

)
+

. (7)

(4) Delay Lij
K : Video-on-demand (VoD) streaming has a

more relaxed requirement of delay and can use a large

Authorized licensed use limited to: Tsinghua University. Downloaded on June 16,2022 at 05:23:37 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: MultiLive: ABR CONTROL FOR LOW-DELAY MULTI-PARTY INTERACTIVE LIVE STREAMING 927

playback buffer, whereas live streaming cannot. To maintain
interactivity, the most important requirement is low delay [29].
Therefore, the QoE model should also add delay as penalty.
Let T

up(i)
w denote the system time when sender i starts to

generate the w-th frame and T
down(ij)
w denote the system time

when receiver j starts to receive the w-th frame of sender i.
Then the delay of after sending K consecutive frames from
sender i to receiver j is:

Lij
K = T

down(ij)
K − T

up(i)
K + B

down(ij)
K . (8)

Since receivers have different preferences for the above four
aspects, we define the receiver j’s QoE as the weighted sum
of the above four aspects, namely:

QoEj =
∑

i

(
αijQ

ij
K − βijV

ij
K − γijE

ij
K − δijL

ij
K

)
, (9)

where αij , βij , γij , and δij are the weights of the different
QoE terms between sender i and receiver j. Note that these
weights are per sender-receiver pair, allowing each receiver to
personalize its QoE preference to different senders depending
on the amount of interaction needed and the context of the
application. Finally, the overall session QoE is the weighted
sum of all receivers’ QoE:

QoE =
∑

j

ηjQoEj , (10)

where ηj is the weight of the j-th receiver.
The server obtains global state information and calculates

the bitrates that each sender should produce. Then it informs
senders of these information. Senders generate the streams as
required. So the problem is, to maximize the global QoE, how
to design this adaptive bitrate control algorithm running on
the server? That is, given the current buffer occupancy and
uplink/downlink throughput prediction, how many streams are
generated by each sender and what are their real bitrates Rij

w ?
The problem can be formulated as:

max
Rij

w

QoE

s.t. (1) (2) (3) (4) (11)

IV. ALGORITHM DESIGN

In this section, we first give an overview of the algorithm,
namely MultiLive. Then we elaborate the solution in three
subsections, including non-linear programming, buffer feed-
back adjustment, and bitrate clustering.

A. Design Overview

The MultiLive algorithm workflow is shown in Fig. 2.
To find the number of streams and the bitrate of each stream
Rij

w a sender i can transmit to the receiver j, we split the
solution into two steps. First, we calculate the target bitrate
R̂ij

w for each pair of sender-receiver. Both the receivers and
senders have to jointly decide which bitrate to produce and
which bitrate to receive. Specifically, we build a non-linear
programming (NLP) solution to get the target bitrate R̂ij

w . It is
also updated through the buffer feedback adjustment (BFA) to

Fig. 2. The algorithm workflow of adaptive bitrate controller.

alleviate system errors. NLP and BFA run in coarse- and fine-
grained manner respectively to meet both the high accuracy
and the real-time constraint. As we will introduce in the
evaluation section, we run NLP with a period of 2000 ms and
BFA with a period of 200 ms in our system. Second, we cluster
and aggregate the target bitrate R̂ij

w to the real bitrate Rij
w to

transmit according to the SVC requirements.

B. Non-Linear Programming (NLP)

In a multi-party scenario, finding the target bitrate is an opti-
mization problem that takes into account various constraints
from a global perspective, as we have formulated in Eq. (11).
Previous studies [30], [31] show that as the bitrate increases,
the rate of increase in video quality score decreases. In other
words, there is no linear correlation between the bitrate of a
video stream and its perceptual quality. Guo et al. [18] used
logarithmic function to characterize the relationship between
video quality and video bitrate. Based on these studies, the
video quality in our QoE objective function is set to be loga-
rithmic. Also, the target bitrate is calculated on a continuous
domain rather than discrete.

For a constrained non-linear programming problem, the
constraints can be converted to penalty to turn the problem into
an unconstrained one to solve by the gradient descent method.
We build a non-linear programming (NLP) solution to solve
Eq. (11) and get preliminary result (target bitrate R̂ij

w). Denot-
ing N as the number of streamers, the time complexity of NLP
solution is O(N5.614). The reason is that matrix inversion will
not be more complicated than matrix multiplication [32] and
the complexity of the commonly used multiplication algorithm
(i.e., Strassen’s algorithm) is O(M2.807) for matrices of M
dimension [33]. Although the problem can be solved in poly-
nomial time complexity, it is not fast enough for a real-time
update. So we need a complementary approach to calculate the
target bitrate faster. Furthermore, the input parameters are not
always accurate due to factors, such as inaccurate throughput
estimates and fluctuations in video encoding rate. Therefore,
we introduce an additional step, buffer feedback adjustment,
which updates the target bitrate based on the buffer state to
alleviate the input errors. We will introduce it in the next
section.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 16,2022 at 05:23:37 UTC from IEEE Xplore. Restrictions apply.

928 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 2, APRIL 2022

C. Buffer Feedback Adjustment (BFA)

Since the change of buffer occupancy reflects the change of
throughput, we can make some feedback adjustments to the
target bitrate R̂ij

w . In this way, we may reduce the through-
put prediction errors and make target bitrate more accurate.
In Eq. (3), given the buffer and throughput when the receiver
starts to receive the w-th frame, we can estimate that the buffer
occupancy of the (w+1)-th frame when the throughput is
unchanged. However, at the moment when the receiver actually
starts to receive the (w+1)-th frame, we can get the actual
buffer occupancy. The difference between the target value
and the real value reflects the change rate of the throughput.
It determines the range of target bitrate adjustment.

To perform the adjustment, we refer to the PID con-
troller [34], a widely used feedback control technique.
It includes proportional controller, integral controller and
derivative controller. It monitors the error value et, which is
the difference between the target value and the real value. Then
it can output the control signal ut:

ut = Kpet + Ki

∫ t

0

eτdτ + Kd
det

dt
, (12)

where the three parameters Kp, Ki, and Kd represent the
coefficients for the proportional, integral, and derivative terms
respectively. The derivative term is sensitive to the measure-
ment noise [35]. So we make some modifications to suit our
specific scenario. In our control policy, the parameter for the
derivative control Kd equals zero. So strictly speaking, our
controller is a PI controller. The remaining two terms are as
follows:

(1) Proportional controller calculates the difference between
the real buffer and the target buffer to alleviate the prediction
errors. We use Zp to represent this term:

Zp = Kp

(
B

down(ij)
w+1 − B̂

down(ij)
w+1

)
. (13)

(2) Integral controller integrates the difference between the
real buffer and the target buffer to alleviate cumulative system
errors. We use Zi to represent this term:

Zi = Ki

∫ w+1

0

(
B

down(ij)
t − B̂

down(ij)
t

)
dt. (14)

Therefore, we obtain the updated target bitrate value based
on the following buffer feedback adjustment (BFA):

R̂ij
w+1 = R̂ij

w + Zp + Zi. (15)

In our case, the control signal ut represents the target bitrate.
The parameters Kp and Ki are responsible for completing
the dimension conversion. We need to update the target
bitrate for each pair of streamers using PI controller. So the
time complexity of the buffer feedback adjustment algorithm
is O(N2).

D. Bitrate Clustering

Through the non-linear programming solution and the buffer
feedback adjustment, we can get the target bitrate R̂ij

w for
each pair of sender-receiver. The sender, however, may not
have the encoding capacity or uplink bandwidth to encode

Algorithm 1 Bitrate Clustering
Input: N : the number of senders;

R̂ij
w : the target bitrate of the w-th frame from i to j;

mi: the number of streams generated by sender i
Output: μi

1, μ
i
2 · · ·μi

mi
: the cluster centroids of sender i

1: Initialize cluster centroids μi
1, μ

i
2 · · ·μi

mi
randomly

2: for i = 1 to N do
3: repeat
4: for j = 1 to N and j �= i do
5: class(R̂ij

w)← arg min
k
|QoE(R̂ij

w)−QoE(μi
k)|

6: end for
7: for k = 1 to mi do

8: μi
k ←

�

j

1(class(R̂ij
w)=k)R̂ij

w

�

j
1(class(R̂ij

w)=k)
9: end for

10: until convergence
11: end for
12: return μi

1, μ
i
2 · · ·μi

mi

and transmit at each of these target bitrates. To alleviate the
problem, the server clusters the target bitrates R̂ij

w to obtain
the actual bitrates Rij

w , according to which the sender produces
the sub-streams and uses the SVC to aggregate them into one
stream. This approach reduces the overhead of encoding and
transmission.

In the process of clustering, we define QoE loss as the
difference between the QoE value of the target bitrate and
the QoE value of the cluster centroid bitrate. The ideal
situation is that each sender produces an SVC stream that
minimizes overall QoE loss of receivers. We use the K-means
clustering algorithm for clustering. The details are shown in
Algorithm 1. Ideally, if the cluster centroids in the several
consecutive iterations are the same, the algorithm is said to
have converged. But in practice, we use a less strict criteria for
convergence: Given a threshold σ, for the cluster centroid μi

k in
an iterative process, if the (μi

k)′ produced by the next iteration

satisfies σ <
(μi

k)′

μi
k

< 1
σ and this state can be maintained for

several rounds, we consider the algorithm to have converged.
The returned μi

1, μ
i
2 · · ·μi

mi
(the cluster centroids of sender i)

are the actual bitrates that the sender i needs to encode the
video into. The server notifies senders of the information. Then
the senders generate the streams as required. Considering that
the number of streamers in a session is in the order of tens
or less, this algorithm typically needs dozens of iterations to
converge. The time complexity of the bitrate clustering using
K-means algorithm [36] is O(N2).

MultiLive periodically solves the non-linear programming
problem to obtain the target bitrate and, in the interim, uses
a feedback control algorithm to adjust the target bitrate. Then
the target bitrates are clustered into real bitrates. So the time
complexity of the overall algorithm is O(N5.614 + N2) =
O(N5.614) (N is the number of streamers). In our scenario,
N is in the order of tens or less. So this time complexity is
acceptable.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 16,2022 at 05:23:37 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: MultiLive: ABR CONTROL FOR LOW-DELAY MULTI-PARTY INTERACTIVE LIVE STREAMING 929

Fig. 3. The available bandwidth measurement algorithm.

V. AVAILABLE BANDWIDTH MEASUREMENT

An important input of the adaptive bitrate control algorithm
is the prediction of future bandwidth. Previous studies mostly
focus on optimizing the prediction process, using time-series
model [12], [14], [37], machine-learning model [38], [39], and
data-driven model [40]. However, as the historical throughput
is generally lower than the available bandwidth, it will result
in a lower predicted bandwidth value. On the other hand,
literature studies either send dummy traffic [20] or add a
measurement proxy [21] to probe available bandwidth in
rapidly changing and unstable mobile Internet, which increase
the overhead and difficulty of deployment in real-world sce-
narios. Furthermore, throughput measurement is accurate only
in cases where the pipeline is filled. Although a segment
downloading in the pre-recorded video streaming could fill
the pipeline, in live streaming scenarios, the sender sends the
packets only after a video frame is generated. The predicted
value would be lower if the available bandwidth is estimated
based on the throughput measured.

We exploit the burst characteristic of keyframe in the video
streaming to passively probe the upper limit of the avail-
able bandwidth without causing any transmission overhead.
Specifically, in multi-party live streaming, each coded video
stream consists of some keyframes and many non-keyframes.
Keyframe, also known as the intra-frame (I-frame), is a frame
that is independently compressed without referencing other
frames. It is the least compressible but does not depend on
other video frames to be decoded. Compared to a keyframe,
non-keyframe depends on data from previous frames for
decoding and is more compressible. Generally, a keyframe
is larger in size and sent as a burst. We thus choose to use
keyframe burst to probe the bandwidth passively.

The idea of the algorithm is illustrated in Fig. 3. A keyframe
is transmitted as a burst with dozens of packets. We assume
that all packets in the same keyframe have the same length
(i.e. Maximum Transmission Unit). The algorithm first collects
the One-Way Delay (OWD) of all packets belonging to a
keyframe. An one-way delay is mainly composed of 4 parts:
processing delay (time to examine the packet), queuing delay
(time to wait at output link for transmission), transmission
delay (time to push the packet’s bits into the link), and propa-
gation delay (time to propagate on the physical link) [41]. All
packets of the same keyframe generally experience the same
processing delay, transmission delay and propagation delay.
The only difference is the queuing delay. The algorithm finds

Fig. 4. Implementation architecture (The gray part in the figure is the module
we added).

the packet i with the minimum one-way delay (i.e., the packet
at the head of the burst) and the packet j with the maximum
one-way delay (i.e., the packet at the end of the burst). The
difference between OWDmax and OWDmin is the difference
between the queuing delay of packet i and packet j, which is
also the accumulated transmission time of the entire keyframe
from the network port to the link. Dividing the total size in
bytes of the keyframe by this difference reflects the available
bandwidth. Specifically, let the sending timestamp of packet i
be sendi. The packet arrival timestamp at the receiver end is
recvi, and the corresponding time of the sender is recv′i. The
sending delay of the keyframe is thus:

ΔOWD = OWDmax −OWDmin

= (recv′j − sendj)− (recv′i − sendi)
= [(recvj − sendj) + (recv′j − recvj)]
−[(recvi − sendi) + (recv′i − recvi)]

= (recvj − sendj)− (recvi − sendi). (16)

Since both the values of OWDmax and OWDmin contain
the clock difference between the sender and the receiver, the
use of subtraction can easily eliminate the difference, thus
avoiding the clock synchronization problem. In addition, this
also converts the inputs of ΔOWD calculation into easily
available data to estimate the available bandwidth:

Avai_bwd =
Datakeyframe

ΔOWD

=
Datakeyframe

(recvj − sendj)− (recvi − sendi)
. (17)

With the use of the burst data of keyframe to probe the
available bandwidth, we can improve the effectiveness of
ABR algorithm so that the network bandwidth can be more
efficiently utilized.

VI. IMPLEMENTATION

We implement the ABR algorithm and the available band-
width measurement algorithm within an open-source video
conferencing server, which is based on WebRTC [42], [43].
The implementation architecture is shown in Fig. 4. To enable
the server to obtain the state information of each browser,
we modify the browser code, the server code, and the commu-
nication code between the browser and the server. Specifically,
we add the available bandwidth measurement module and jitter

Authorized licensed use limited to: Tsinghua University. Downloaded on June 16,2022 at 05:23:37 UTC from IEEE Xplore. Restrictions apply.

930 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 2, APRIL 2022

buffer occupancy acquisition module in the browser. We also
add the adaptive bitrate controller module in the server. After
getting the state information, the browser sends it to MultiLive
server via HTTPS/WebSocket. The server collects the state
information from multiple browsers, runs the ABR algorithm
through the adaptive bitrate controller, decides the bitrate that
the browser should generate, and returns this result to each
browser. Then the browsers generate streams as required.

In terms of media data, the browser encodes the stream
through WebRTC VP9-SVC encoder and uses the RTP/RTCP
protocol to transmit packets to the server. The server buffers
and relays media data packets from other browsers to this
browser. After decoding the stream through SVC decoder, the
browser plays back the video. In addition, a core module
is used in the server to be responsible for three things:
(i) managing application sessions with browsers through a
REST-ful API; (ii) implementing the WebRTC communication
with the same browsers, by taking care of the whole WebRTC
life cycle (negotiation, establishment and management of con-
nections between users); (iii) attaching to video room, in order
to allow them to exchange messages and more importantly
media data.

As for compatibility, enterprise networks with HTTP
proxy/firewall create substantial problems with WebRTC,
which is running over RTP with UDP, since it was designed
to do so. This problem has been recognized by both WebRTC
and IETF community, with many standard and proprietary
solutions [44]–[46]. First of all, when RTP/UDP fails to
establish a connection, some clients will run RTP over TCP,
and this is permitted in some cases and standardized by
RFC 4571 [45]. This solution has been implemented in many
commercial products as we asked around. However, this is
not perfect because there is still a problem when the proxy
checks the layer-7 HTTP information. So, the Janus WebRTC
proposes to use HTTP to tunnel the RTP payload [46], which
is a neat and straightforward solution. In this way, RTP flows
can be tunneled over HTTP, which will make our system
compatible with the Internet middleboxes.

VII. EVALUATION

We conducted extensive trace-driven simulations and real
test bed experiments to evaluate our method. To obtain the
throughput traces from an actual deployed live streaming
service, we collected the uplink and downlink data from three
geographically distributed live streaming servers for more than
72 hours. We refer to this as the Commercial Dataset. We also
use the Belgium 4G/LTE dataset [22] in the evaluation. This
dataset consists of throughput measurements in 4G networks
along several paths in and around the city of Ghent, Belgium.
We distributed the two types of traces to five streamers in the
simulator respectively and generated a frame sequence at a
rate of 30 frames per second. We also performed a test bed
evaluation and deployed the algorithm on a real live streaming
platform.

The parameters we used in our experiments are as follows.
We set the buffer thresholds for faster and slower playback,
B

down(ij)
fast and B

down(ij)
slow to 90 ms and 30 ms uniformly

for each sender i and each receiver j. In addition, we set

Fig. 5. Heat map for the proportional controller coefficient Kp and integral
controller coefficient Ki.

the number of clusters used in K-means algorithms to 2,
considering there are only five streamers in our settings. For
the QoE model, we set αij = 1, βij = 1, γij = 1, and
δij = 20 (strict requirement for the delay term), for all i and
j, except for α0,2 = 0.6 and δ0,2 = 28 (prefers lower quality
but lower delay); α1,3 = 1.2 and δ1,3 = 16 (prefers higher
quality but higher delay) to illustrate the different preferences
for receivers 2 and 3.

A. Parameter Choice of PI Controller

In our first experiment, we study the sensitivity of the
method to the parameters Kp and Ki of the PI controller.
Since the PI controller is used to adjust the buffer feedback
thus the target bitrate, if parameters Kp and Ki are sensitive
to the network environment, tuning them will require more
efforts. So we want to explore whether there exist a set of Kp

and Ki values that work well in a wide range of network
conditions. We consider the network throughput from the
72 hours traces separately. For the k-th hour network trace,
we vary the values of Kp and Ki in a large range to obtain the
corresponding QoE values. Then we consider all the network
traces and accumulate the QoE values. Fig. 5 shows the heat
map with the heat for each pair of Kp and Ki values as the
average QoE value. A larger heat value means that it leads
to good performance for more traces of network throughput.
For different Kp and Ki pairs, the heat value varies. The
white region represents the highest values, indicating that the
corresponding Kp and Ki pairs provide good performance
across almost all network traces. The recommended ranges
for the proportional controller coefficient Kp and integral
controller coefficient Ki are:

Kp ∈ [1.2× 10−4, 2.0× 10−4]
Ki ∈ [0.2× 10−5, 1.0× 10−5] (18)

Considering that the network traces are collected from a real
live streaming server and that they exhibit different temporal
and spatial characteristics, the results show that Kp and Ki can
be tuned to accommodate the large variations among different
traces. It means that we can find a range of Kp and Ki values
to make the PI controller practical. We use Kp = 1.2× 10−4

and Ki = 1.0× 10−5 as our default settings.

B. Interval Choice of NLP and BFA

The two major steps in calculating the target bitrate
are non-linear programming (NLP) and buffer feedback

Authorized licensed use limited to: Tsinghua University. Downloaded on June 16,2022 at 05:23:37 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: MultiLive: ABR CONTROL FOR LOW-DELAY MULTI-PARTY INTERACTIVE LIVE STREAMING 931

Fig. 6. Heat map for non-linear programming (NLP) and buffer feedback
adjustment (BFA) interval.

Fig. 7. Receiver buffer occupancy and bitrate from singing and dancing
streamers, respectively.

adjustment (BFA). The importance of NLP is to provide the
consideration of global constraints and resource competition
among streamers. It relies on the throughput estimation. In the
meantime, BFA is used to alleviate system errors during the
modeling and measurement process. They can be executed at
different intervals (INLP , IBFA), resulting in different QoE
effects. We want to explore whether there exist a set of
INLP and IBFA values that work well in a wide range of
network environment. We also consider 72 hours of network
throughput traces separately. For the k-th hour network trace,
we vary the values of INLP and IBFA in a large range to
obtain the corresponding QoE values. Then we consider all
the network traces and get the average QoE values. Fig. 6
shows the heat map. A larger heat value means that it leads
to good performance for more traces of network throughput.
The recommended ranges for NLP and BFA interval are:

INLP ∈ [1400 ms, 2300 ms]
IBFA ∈ [50 ms, 400 ms] (19)

If the time interval of NLP is short, NLP will frequently
generate target bitrates with measurement errors, leaving BFA
little time to adjust the bitrate based on feedback, resulting in a
low QoE value. On the other hand, if the time interval of NLP
is long, the server cannot response to changes quick enough.
While in live streaming, BFA is a relatively conservative
strategy. It is hard to increase the bitrate once it is lack of
global information, which leads to a low QoE value too. In the
mean time, QoE value falls as the interval of BFA grows
because a long interval of BFA leads to the insensitivity to
buffer changes. We use INLP = 2000 ms and IBFA = 200 ms
as our default settings.

C. Preferences of Multiple Streamers

To illustrate how effective we can adjust to different pref-
erences of steamers, we consider the scenario with three
streamers i, j, and k. Streamers i and j are singing together in

Fig. 8. The performance of available bandwidth measurement algorithm
under different bandwidth traces.

a chorus; Streamer k is dancing for them. Streamer i hopes the
stream delay of j who sings with him is low. So i can increase
the delay penalty weight in the QoE model. Streamer i also
wants to see the dancing posture of k clearly. So i can increase
the video quality weight of k in the QoE model. Dynamically
setting the weights of different aspects in the QoE model for
different streamers can effectively satisfy user preferences.

We simulate the above scenario in the simulator. Streamer i
increases the delay penalty weight of j and the video qual-
ity weight of k. We measure i’s receiver buffer occupancy,
which stores frames sent from j and k respectively. We also
measure bitrates from these two streamers. The result, shown
in Fig. 7, shows that after the weight setting, the receiver
buffer occupancy levels from two streamers have a great gap.
The buffer storing j’s data is obviously lower to maintain
a lower delay while the buffer storing k’s data is obviously
higher to maintain a higher bitrate. Setting different weights
for QoE model changes the receiver buffer occupancy. On the
other hand, bitrates from two streamers also show differences.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 16,2022 at 05:23:37 UTC from IEEE Xplore. Restrictions apply.

932 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 2, APRIL 2022

Fig. 9. Detailed performance using the commercial dataset.

Fig. 10. Detailed performance using the Belgium 4G/LTE Dataset.

The bitrate from k is relatively high to ensure high video
quality, and the bitrate from j is lower to ensure the smooth-
ness and low delay. In fact, each streamer can set different
priority for each stream he receives, including high bitrate, low
bitrate switching, low stall duration, low delay and balanced.
Personalized requirements can be well satisfied.

D. Available Bandwidth Measurement

To evaluate the performance of the available bandwidth
measurement algorithm, we perform experiments on the test
bed. The client and the server modules are implemented
on two Linux machines respectively. The client connects to
the server via 802.11ac WiFi. We use tc (traffic control,
a user-space utility program used to configure the Linux
kernel packet scheduler) [47] to tune the network condition
to simulate four different variations of network bandwidth,
including square, sine, jitter and real bandwidth traces. In these
four different network situations, we insert timestamps into
the code to get one-way delay, and analyze the RTP packets
with the same timestamp to get the keyframe size. Then
the client estimates the bandwidth according to the formula
Datakeyframe/ΔOWD which we introduce above.

The results are shown in Fig. 8. The Burst_estimate
line represents the bandwidth estimated with our algorithm,
which applies the data amount in keyframe to divide by the
difference between the maximum OWD and the minimum
OWD. The Average_estimate line obtains the estimated
bandwidth using common algorithm to find the amount of
data received per second, and then performs harmonic aver-
age smoothing. The PANDA line adopts additive-increase-
multiplicative-decrease (AIMD) principle to probe available
bandwidth based on the network throughput [48]. In all four
different network scenarios, the Burst_estimate line fits well
with the Capacity line (bandwidth capacity limited by tc).
In Average_estimate, low rate non-keyframes are also used
in the estimation, resulting in a smaller value. The PANDA

line adopts AIMD based on the Average_estimate line.
So it is roughly similar to the Average_estimate line with
some fluctuations. In addition, when the network fluctuates,
Burst_estimate can always well follow the changes of the
network in time, while Average_estimate and PANDA
have a certain delay and have a poor ability to follow the
changes of the network. For a real bandwidth trace from a
Commercial Dataset which contains sudden bursts and drops,
Burst_estimate can measure the bandwidth well with the
use of the burst data of keyframe. If we define 1− |C−Ĉ|

C as
the accuracy (C and Ĉ are the actual and estimated available
bandwidth respectively), then the average accuracies of our
algorithm in the square, sine, jitter and real cases are 92.6%,
93.2%, 89.8% and 91.9% respectively. The accuracies of
Average_estimate algorithm are 74.4%, 70.0%, 53.8% and
64.5%. In addition, the accuracies of PANDA algorithm are
74.3%, 70.1%, 54.1% and 65.8% in these four cases. This
shows that our probing algorithm can much more accurately
estimate the available bandwidth and well track the changes
under all test scenarios.

E. QoE Performance

We now evaluate the performance of MultiLive in terms of
QoE and its four components, using the following methods as
baselines:

• NLP: A simpler version of MultiLive where BFA is not
performed.

• BFA: Another simpler version of MultiLive where NLP
is not performed.

• Single: A simpler version of MultiLive where only a
single bitrate is generated by each sender.

• Fixed: Computes the bitrates using initial network con-
ditions, then continues to send at these bitrates without
adapting to changing network conditions.

• Janus: A bitrate control algorithm in an open-source
video conferencing server based on WebRTC [42], [43].

Authorized licensed use limited to: Tsinghua University. Downloaded on June 16,2022 at 05:23:37 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: MultiLive: ABR CONTROL FOR LOW-DELAY MULTI-PARTY INTERACTIVE LIVE STREAMING 933

It comprehensively considers sender-side bandwidth
estimation and receiver-side RTCP REMB feedback
message.

• Mesh: Each streamer establishes a point-to-point (p2p)
connection with all other streamers directly. It divides
the uplink bandwidth equally and generates several same
bitrate streams for multiple receivers [49].

Fig. 9 and Fig. 10 present the performance of average
bitrate, average bitrate variation, stall ratio (stall time/total
time) and delay in the form of CDF for each dataset.

(i) NLP: With the estimation of global throughput and
consideration of QoE weights, NLP takes more advantage
of the network transmission capacity to achieve high bitrate.
However, the adjacent two bitrate decisions use separate
throughput data, resulting in large bitrate jitter. In addition,
it is called at a larger interval because of its overhead on
communication and computation. So it cannot provide a fine-
grained adjustment. On the other hand, there exist system
errors during the modeling and measurement process. For both
reasons, stall happens frequently, resulting in high delay.

(ii) BFA: An essential difference between live streaming
and VoD streaming is that the contents of live streaming is
produced just before it is played. So even if the stream bitrate
in live streaming is far below the network throughput, the
buffer occupancy cannot accumulate quickly as data that have
not been generated cannot be buffered. The weak accumulation
of buffer leads to a low bitrate. Due to this phenomenon, BFA
results in low delay but poor video quality.

(iii) Single: It has to choose a single target bitrate that is
the lowest common denominator among all the receivers, and
thus the target bitrate is lower compared to other schemes,
leading to lower quality. Due to the lower bitrate, however,
the delay and the stall duration are smaller for receivers with
higher uplink throughput.

(iv) Fixed: It ignores the receiver state and network fluctu-
ation, which leads to high bitrate and severe stalling.

(v) Janus: It comprehensively considers the uplink band-
width of the sender and selects the highest bitrate allowed
for the downlink transmission of all receivers. To ensure the
smooth playback for users under low throughput condition,
it conservatively chooses a lower bitrate, resulting in lower
delay and fewer stalls.

(vi) Mesh: It generates several streams for multiple receivers
simultaneously, which causes the uplink to become a bottle-
neck and severely limits the increase of the bitrate. Therefore,
the bitrate is very low. It also has lower delay and fewer stalls.

(vii) Our algorithm MultiLive combines the advantage of
NLP and BFA. On the premise of guaranteeing fluency,
it elevates users’ video quality under the limited throughput
to maximize the personalized QoE. As shown in the figure,
it performs well on both datasets.

Fig. 11 and Fig. 12 present the QoE performance for both
datasets. We can see that: (i) The overall QoE value of
NLP is relatively low due to the low accuracy of prediction;
(ii) Due to the lower bitrates and the hysteresis of feedback,
BFA does not perform well either; (iii) Due to the worse overall
network condition in the Commercial Dataset, compared to
the Belgium 4G/LTE Dataset, the score of video quality falls

Fig. 11. QoE performance using the Commercial Dataset.

Fig. 12. QoE performance using the Belgium 4G/LTE Dataset.

quickly in the Commercial Dataset, according to the logarith-
mic characteristic of video quality function q(·), leading to
a lower QoE for BFA; (iv) Single selects only one bitrate
and the QoE effect is slightly worse; (v) Fixed selects the
bitrate using initial network conditions, which change greatly
during different time. So the QoE value is relatively unstable;
(vi) Since Janus and Mesh has lower bitrate, which causes poor
video quality, they both have lower QoE scores. Compared
with Fixed, our proposed MultiLive algorithm improves QoE
by 2-5×.

F. Test Bed Evaluation

To evaluate the performance of our algorithm in a more
realistic network scenario, we use a live streaming test bed to
experimentally evaluate MultiLive, as shown in Fig. 13. The
streamer uses commodity desktop with our specified imple-
mentation based on Chrome to connect to the server through a
WiFi network. The desktop has an Intel 4-core i5-8250U CPU.
The streamer utilizes its SVC software encoding capability to
generate multi-rate video stream. To ensure the controllability
of experiments, we deploy a network emulator [50] between
the router and wireless access point (AP) to control network
changes. We use a PC to configure network emulator, which
can emulate a simple network link between physical network
port pairs and does not classify the packets. All packets
passing through the network emulator will be subjected to
delay, dropping, or other impairments with some probability.
We build three different network environments by controlling
the packet loss rates and RTT: a strong network with packet
loss rate less than 0.5% and RTT less than 10 ms, a medium
network with packet loss rate between 0.5% and 2.5% and
RTT less than 50 ms, and a weak network with packet loss
rate more than 2.5% and RTT less than 100 ms. We measure
the performance of MultiLive under these network conditions.
The resulting average bitrate, average bitrate variation, stall
ratio, and delay are shown in Fig. 14.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 16,2022 at 05:23:37 UTC from IEEE Xplore. Restrictions apply.

934 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 2, APRIL 2022

Fig. 13. Experimental test bed for strong, medium and weak network
environment emulated with network emulator.

Fig. 14. Detailed performance for test bed.

As can be concluded from the figure, MultiLive increases
the bitrate with the improvement of network condition. Mean-
while, it can control the delay within a low value which is
slightly higher than RTT. Under strong network conditions,
there is a 97% probability that the delay is less than 100 ms.
For medium network, the probability is 90%. On the premise
that the RTT under weak network occupies around 100 ms,
its end-to-end delay is under 150 ms with the probability of
80%. Besides, the average bitrate variation and stall ratio are
both satisfactory under different network conditions.

In addition, if we factor out the network propagation
delay (RTT) component, which MultiLive cannot control, from
the end-to-end delay, we obtain the average delay of 22 ms,
28 ms, and 55 ms for strong, medium, and weak network
conditions respectively. This low delay points to the efficacy of
MultiLive in supporting multi-party interactive live streaming
in a network with low RTT.

G. Overhead Analysis

In this subsection, we perform some overhead analyses of
the proposed system, including SVC encoding overhead, con-
trol packet overhead and algorithm execution time overhead.
We conduct the experiments on a desktop, which has an Intel
4-core i5-8250U CPU.

Fig. 15. Comparison of encoding delay per frame between VP9 and
VP9-SVC encoders.

TABLE II

MEAN AND STANDARD DEVIATION OF TIME OVERHEAD FOR

THREE ALGORITHM COMPONENTS

(1) To evaluate the encoding overhead of SVC, we use
a Chrome WebRTC-internal tool to measure the encoding
delay of VP9, VP9-SVC and VP9-Simulcast respectively in
a typical video conference scenario. We configure VP9-SVC
to use two spatial layers (spatial resolution: 640 × 480,
320 × 240) and three temporal layers (frame rate: 8, 15,
30 FPS). VP9-Simulcast produces multiple independent ver-
sions of the same stream with different resolutions. The result
is shown in Fig. 15. We can find that in a typical video
conference scenario, the VP9 encoder takes an average of
3.5 ms to encode a frame, while the VP9-SVC encoder
requires an average of 6.0 ms per frame. Compared with the
plain VP9, VP9-SVC only adds about 2.5 ms encoding delay
per frame, which is acceptable. To achieve the same effect of
SVC, VP9-Simulcast requires an average of 10.4 ms encoding
delay per frame, which is higher than the delay in the case of
using SVC. In addition, compared with the end-to-end 70 ms
delay requirement [8], VP9-SVC only needs 6.0 ms encoding
delay. Therefore, the encoding module is not the bottleneck
in this scenario, but the network transmission is a bottleneck
and needs to be optimized.

(2) The adaptive bitrate controller on the server takes,
as inputs, the uplink/downlink throughput and buffer occu-
pancy of each streamer to determine the bitrates to use.
Therefore, the streamers need to periodically feed back the
information using RTCP to the server. The frequency of
feedbacks is related to the frequency of algorithm execution.
For example, if the algorithm needs to be executed every
200 ms (as discussed in subsection B), the streamers need
to feed back to the server at least every 200 ms. We make
statistics on the throughput of RTP and RTCP packets when
the system is running. The result is shown in Fig. 16. It can
be seen that the throughput of data packets (RTP) is much
greater than that of control packets (RTCP), and there is an
order of magnitude difference. Consequently, compared with
the video streaming data, control packet overhead is relatively
small.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 16,2022 at 05:23:37 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: MultiLive: ABR CONTROL FOR LOW-DELAY MULTI-PARTY INTERACTIVE LIVE STREAMING 935

Fig. 16. Comparison of RTP and RTCP throughput.

Fig. 17. Some statistics for real-world deployment.

(3) Our algorithm includes three components: NLP, BFA and
Clustering algorithm based on QoE loss. To better evaluate the
performance of the algorithm, we measure the time overhead
when each component is executed only separately. The result
is shown in Table II. As can be seen from the table, the time
overhead of NLP is within 100 ms. In other words, running
NLP at a certain frequency does not have a high overhead.
At present, we perform NLP every 2 seconds (as discussed in
subsection B). The corresponding overhead caused by NLP is
low. At the same time, the BFA and Clustering algorithm take
less than 1 ms, which can fully support the requirements of
frequent calls.

H. Real-World Deployment

We have deployed the algorithm on a commercial live
streaming platform that provides such services for thousands
of users. Our solution has been running on both commod-
ity personal mobile devices and high-end special devices
(including CPE and advanced desktops). Some statistics of the
number of users and sessions over time are shown in Fig. 17.
A session is a temporary and interactive information inter-
change between users. More than 2300 users and 400 sessions
have been simultaneously online during some peak time. In our
statistics, there are at most nine streamers participating in a
session at the same time. As shown in the figure, as the number

of streamers in a session increases, the number of sessions
decreases. This may be because there is a constraint on the
total bandwidth.

We also log the end-to-end delay experienced by the users.
For applications of multiple streamers singing together which
require a much tighter synchronization among the users, the
end-to-end delay is generally 40–80 ms (need for better user
access network); for other types of applications, such as
ordinary video chat or video conference among streamers, the
delay is generally 100–200 ms. They both use our algorithm.
The result shows that our algorithm can well support real-
world multi-party interactive live streaming system.

VIII. RELATED WORK

Previous ABR algorithms: The previous ABR algorithms
can be primarily grouped into four classes: rate-based, buffer-
based, hybrid, and learning-based. (i) Rate-based methods
estimate the available network throughput and request the next
chunk at the highest bitrate that the network is predicted to
support. For example, Akhtar et al. [10] proposed a system
for automatically tuning ABR algorithm configurations in real
time to match the current network state. Jiang et al. [37]
presented a principled understanding of bitrate adaptation
and analyzed several commercial players through the lens of
an abstract player model. (ii) Buffer-based methods solely
consider the client’s buffer occupancy when deciding the
bitrates for future chunks. For example, Huang et al. [51]
considered using only the current buffer occupancy to pick
a video rate, allowing for a simple function to map current
buffer occupancy to video rate. Spiteri et al. [13] devised
a buffer-based online control algorithm that uses Lyapunov
optimization techniques to minimize rebuffering and maxi-
mize video quality. (iii) Hybrid methods use both throughput
prediction and buffer occupancy to select bitrates that are
expected to maximize QoE over several future chunks. For
example, Yin et al. [14] proposed a novel model predictive
control algorithm that can optimally combine throughput and
buffer occupancy information. (iv) Learning-based methods
use reinforcement learning to select bitrate adaptively. For
example, Mao et al. [11] trained a neural network model that
selects bitrates for future video chunks based on observations
collected by client video players. Sengupta et al. [15] proposed
a system which takes into consideration content preferences
of users during adaptive video streaming over HTTP and
employed the reinforcement learning model to enable optimal
prefetch and bitrate decisions. In addition, some researchers
have adopted other methods. For example, Yadav et al. [12]
proposed a bitrate adaptation algorithm by modeling a client
as an M/D/1/K queue. Lai et al. proposed a FoV-based
bitrate adaptation algorithm for mobile virtual reality system to
improve the QoE [52], [53]. However, all these methods only
consider one streaming source and its delivery to a number
of viewers in VoD streaming scenarios, rather than many-to-
many in interactive live streaming scenarios. In addition, these
methods select from discrete bitrate gears instead of adjusting
on continuous bitrate domain.

Live streaming: Some previous studies provide architectures
for live streaming delivery, mainly including two categories.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 16,2022 at 05:23:37 UTC from IEEE Xplore. Restrictions apply.

936 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 2, APRIL 2022

The first category is the centralized architecture. For example,
Mukerjee et al. [54] provided real-time control over individual
streams from the CDN side and employed centralized quality
optimization for responsiveness. The second category is dis-
tributed architecture. For example, Liu et al. [55] designed an
open P2P live video streaming system which can accommodate
a variety of video coding schemes. However, they mainly con-
sider one media source and its delivery to a number of viewers,
which is quite different from us. There are also some studies
that focus on crowdsourced live streaming, which generalizes
the single-source streaming. Chen et al. [56] explored the
emerging crowdsourced live streaming systems and designed
cloud leasing strategy to optimize the cloud site allocation.
They, however, do not account for real-time interaction, where
the delay requirement is very harsh. In addition, He et al. [57]
proposed a novel framework for crowdsourced livecast systems
that offload the transcoding assignment to the massive viewers.
Pang et al. [58] observed unique characteristics related to
viewers (proactive and passive) and designed a deep neural
network model to capture the viewer interaction pattern.
Huang et al. [30] proposed a deep-learning based rate control
algorithm for the real-time video streaming.

Multi-party video conferencing: Some previous studies have
put forward multi-party cloud video conferencing architecture.
Hu et al. [16] studied the server selection and server loca-
tion optimization problem with a k-server mesh topology in
distributed interactive video streaming applications to reduce
end-to-end delay. Wu et al. [17] designed a fully decentralized
algorithm to decide the best paths of streams and the most
suitable surrogates along the paths. Hajiesmaili et al. [9] cast
a joint problem of user-to-agent assignment and transcoding-
agent selection, and proposed an adaptive parallel algorithm.
Ooi and Van Renesse [59] divided up the in-network merging
and transcoding process, and identified suitable cloud servers
to run them, with the goal of minimizing the overall net-
work cost. These studies, however, generally focus on the
selection of transcoding server to minimize the cost of the
service provider and the delay, and cannot meet the need of
multi-party interactive live streaming where different online
streamers may have different QoE preferences. Multi-party
live streaming pays more attention to the user’s experience and
aims to improve the global QoE. Similar to our work, Amir
et al. [60] proposed SCUBA, using scalable video coding and
allowed the receiver to adjust the quality for different senders.
But they do not consider global optimization that takes into
consideration of QoE factors such as delay and smoothness.
Small delay consideration is particular important for multi-
party interactive live applications, where the tolerable delay
is less than 70 ms [8], while for video conference, where
participants take turns to talk, the tolerable delay is around
400 ms [61].

Bandwidth estimation and prediction: Some previous
studies focus on optimizing bandwidth prediction process.
For example, some studies have used time-series mod-
els. Jiang et al. [37] used the harmonic mean over the last
20 samples to predict throughput. Yin et al. [14] used
the harmonic mean of the observed throughput of the last
5 chunks. Yadav et al. [12] compared different throughput

prediction methods including Exponential Moving Average
(EMA), Gradient Adaptive EMA, Low Pass EMA, and Kauf-
man’s Adaptive Moving Average (KAMA). Some studies
have used machine-learning models. Mirza et al. [38] used
support vector regression for TCP throughput prediction.
Xu et al. [39] used regression tree to forecast achievable
network performance in real time. Other studies have used
data-driven models. Sun et al. [40] used clusters of similar
sessions and Hidden-Markov-Model (HMM) to achieve better
throughput prediction. There are also some studies that probe
available bandwidth. Mok et al. [21] employed the media
data packets directly to make inline bandwidth measurement.
Zhang et al. [20] used probing (with dummy traffic) to
stabilizes adaptation. Li et al. [48] increased the sending rate
additively and decreased it multiplicatively when congestion.

IX. CONCLUSION

In this paper, we propose an architecture for multi-party
interactive live streaming. We build a QoE model and propose
MultiLive, an adaptive bitrate control algorithm. Specifically,
we apply non-linear programming to get the target bitrate for
each pair of online streamers, and adjust the bitrate according
to the buffer feedback to avoid the accumulation of system
errors. To alleviate the problem of limited uplink transmission
rate, we use bitrate clustering to reduce the number of streams
to transmit from a streamer. We also propose an available
bandwidth measurement algorithm to passively probe the
available bandwidth to improve the effectiveness of MultiLive.
Our results from extensive trace-driven simulations and test
bed experiments demonstrate that MultiLive outperforms the
fixed bitrate algorithm, with 2-5× improvement of the average
QoE. Furthermore, we deploy the algorithm on a commercial
live streaming platform that provides such services for more
than 2300 users. The end-to-end delay has been reduced to
around 100 ms, which is much lower than 400 ms used as the
delay threshold in existing schemes for video conferencing.

REFERENCES

[1] Z. Lu, H. Xia, S. Heo, and D. Wigdor, “You watch, you give, and you
engage: A study of live streaming practices in China,” in Proc. ACM
CHI, 2018, pp. 1–13.

[2] O. L. Haimson and J. C. Tang, “What makes live events engaging on
Facebook Live, Periscope, and Snapchat,” in Proc. ACM CHI, 2017,
pp. 48–60.

[3] J. C. Tang, G. Venolia, and K. M. Inkpen, “Meerkat and Periscope:
I stream, you stream, apps stream for live streams,” in Proc. ACM CHI,
2016, pp. 4770–4780.

[4] L. Provensi, A. Singh, F. Eliassen, and R. Vitenberg, “Maelstream: Self-
organizing media streaming for Many-to-Many interaction,” IEEE Trans.
Parallel Distrib. Syst., vol. 29, no. 6, pp. 1342–1356, Jun. 2018.

[5] F. Wang, J. Liu, M. Chen, and H. Wang, “Migration towards cloud-
assisted live media streaming,” IEEE/ACM Trans. Netw., vol. 24, no. 1,
pp. 272–282, Feb. 2016.

[6] Inke. Accessed: Nov. 22, 2021. [Online]. Available:
https://www.inke.com

[7] Douyu. Accessed: Nov. 22, 2021. [Online]. Available:
https://www.douyu.com

[8] N. Schuett, “The effects of latency on ensemble performance,” Bache-
lor Thesis, Dept. Center Comput. Res. Music Acoust., Stanford Univ.,
Stanford, CA, USA, 2002.

[9] M. H. Hajiesmaili, L. T. Mak, Z. Wang, C. Wu, M. Chen, and
A. Khonsari, “Cost-effective low-delay design for multiparty cloud
video conferencing,” IEEE Trans. Multimedia, vol. 19, no. 12,
pp. 2760–2774, Jun. 2017.

[10] Z. Akhtar et al., “Oboe: Auto-tuning video ABR algorithms to network
conditions,” in Proc. ACM SIGCOMM, 2018, pp. 44–58.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 16,2022 at 05:23:37 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: MultiLive: ABR CONTROL FOR LOW-DELAY MULTI-PARTY INTERACTIVE LIVE STREAMING 937

[11] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video stream-
ing with pensieve,” in Proc. ACM SIGCOMM, 2017, pp. 197–210.

[12] P. K. Yadav, A. Shafiei, and W. T. Ooi, “QUETRA: A queuing
theory approach to DASH rate adaptation,” in Proc. ACM MM, 2017,
pp. 1130–1138.

[13] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman, “BOLA: Near-optimal
bitrate adaptation for online videos,” in Proc. 35th Annu. Int. Conf.
Comput. Commun., Apr. 2016, pp. 1–9.

[14] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic
approach for dynamic adaptive video streaming over HTTP,” in Proc.
ACM SIGCOMM, 2015, pp. 325–338.

[15] S. Sengupta, N. Ganguly, S. Chakraborty, and P. De, “HotDASH:
Hotspot aware adaptive video streaming using deep reinforcement
learning,” in Proc. IEEE ICNP, Sep. 2018, pp. 165–175.

[16] Y. Hu, D. Niu, and Z. Li, “A geometric approach to server selection for
interactive video streaming,” IEEE Trans. Multimedia, vol. 18, no. 5,
pp. 840–851, May 2016.

[17] Y. Wu, C. Wu, B. Li, and F. C. M. Lau, “VSkyConf: Cloud-assisted
multi-party mobile video conferencing,” in Proc. 2nd ACM SIGCOMM
Workshop Mobile Cloud Comput., 2013, pp. 33–38.

[18] Y. Guo, Q. Yang, J. Liu, and K. S. Kwak, “Quality-aware streaming
in heterogeneous wireless networks,” IEEE Trans. Wireless Commun.,
vol. 16, no. 12, pp. 8162–8174, Dec. 2017.

[19] C. Dong, W. Wen, T. Xu, and X. Yang, “Joint optimization of data-
center selection and video-streaming distribution for crowdsourced live
streaming in a geo-distributed cloud platform,” IEEE Trans. Netw.
Service Manage., vol. 16, no. 2, pp. 729–742, Jun. 2019.

[20] B. Zhang, X. Jin, S. Ratnasamy, J. Wawrzynek, and E. A. Lee,
“AWStream: Adaptive wide-area streaming analytics,” in Proc. ACM
SIGCOMM, 2018, pp. 236–252.

[21] R. K. Mok, X. Luo, E. W. Chan, and R. K. Chang, “QDASH: A QoE-
aware DASH system,” in ACM MMSys, 2012, pp. 11–12.

[22] J. van der Hooft et al., “HTTP/2-based adaptive streaming of HEVC
video over 4G/LTE networks,” IEEE Commun. Lett., vol. 20, no. 11,
pp. 2177–2180, Nov. 2016.

[23] Hardware Recommendations. Accessed: Nov. 22, 2021. [Online].
Available: https://www.twitch.tv/creatorcamp/en/setting-up-your-stream/
hardware-recommendations

[24] A. Eleftheriadis, “SVC and video communications,” Vidyo, Hackensack,
NJ, USA, White Paper, 2011.

[25] G. Bakar, R. A. Kirmizioglu, and A. M. Tekalp, “Motion-based rate
adaptation in webRTC videoconferencing using scalable video coding,”
IEEE Trans. Multimedia, vol. 21, no. 2, pp. 429–441, Feb. 2019.

[26] G. Zhang and J. Y. Lee, “LAPAS: Latency-aware playback-adaptive
streaming,” in Proc. WCNC, Apr. 2019, pp. 1–6.

[27] L. Sun, T. Zong, S. Wang, Y. Liu, and Y. Wang, “Tightrope walking in
low-latency live streaming: Optimal joint adaptation of video rate and
playback speed,” in Proc. MMSys, 2021, pp. 200–213.

[28] A. Ahmed, Z. Shafiq, H. Bedi, and A. Khakpour, “Suffering from
buffering? Detecting QoE impairments in live video streams,” in Proc.
ICNP, Oct. 2017, pp. 1–10.

[29] X. Zuo, Y. Cui, M. Wang, T. Xiao, and X. Wang, “Low-latency
networking: Architecture, techniques, and opportunities,” IEEE Internet
Comput., vol. 22, no. 5, pp. 56–63, Sep. 2018.

[30] T. Huang, R.-X. Zhang, C. Zhou, and L. Sun, “QARC: Video quality
aware rate control for real-time video streaming based on deep rein-
forcement learning,” in Proc. MM, 2018, pp. 1208–1216.

[31] M. Mu et al., “A scalable user fairness model for adaptive video
streaming over SDN-assisted future networks,” IEEE J. Sel. Areas
Commun., vol. 34, no. 8, pp. 2168–2184, Aug. 2016.

[32] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms. Cambridge, MA, USA: MIT Press, 2009.

[33] J. Huang, T. M. Smith, G. M. Henry, and R. A. Van De Geijn, “Strassen’s
algorithm reloaded,” in Proc. SC, 2016, pp. 690–701.

[34] W. Huang, Y. Zhou, X. Xie, D. Wu, M. Chen, and E. Ngai, “Buffer
state is enough: Simplifying the design of QoE-aware HTTP adaptive
video streaming,” IEEE Trans. Broadcast., vol. 64, no. 2, pp. 590–601,
Jun. 2018.

[35] Y. Qin et al., “A control theoretic approach to ABR video streaming:
A fresh look at PID-based rate adaptation,” IEEE Trans. Mobile Com-
put., vol. 19, no. 11, pp. 2505–2519, Nov. 2020.

[36] J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A K-means
clustering algorithm,” Appl. Statist., vol. 28, no. 1, p. 100, 1979.

[37] J. Jiang, V. Sekar, and H. Zhang, “Improving fairness, efficiency, and
stability in HTTP-based adaptive video streaming with FESTIVE,” in
Proc. 8th Int. Conf. Emerg. Netw. Exp. Technol., 2014, pp. 97–108.

[38] M. Mirza, J. Sommers, P. Barford, and X. Zhu, “A machine learning
approach to TCP throughput prediction,” ACM SIGMETRICS Perform.
Eval. Rev., vol. 35, no. 1, pp. 97–108, Jun. 2007.

[39] Q. Xu, S. Mehrotra, Z. Mao, and J. Li, “PROTEUS: Network perfor-
mance forecast for real-time, interactive mobile applications,” in Proc.
ACM MobiSys, 2013, pp. 347–350.

[40] Y. Sun et al., “CS2P: Improving video bitrate selection and adaptation
with data-driven throughput prediction,” in Proc. ACM SIGCOMM,
2016, pp. 272–285.

[41] J. F. Kurose and K. W. Ross, Computing Networking: A Top-Down
Approach. Reading, MA, USA: Addison-Wesley, 2010.

[42] A. Amirante, T. Castaldi, L. Miniero, and S. P. Romano, “Janus:
A general purpose webRTC gateway,” in Proc. ACM IPTComm, 2014,
pp. 1–8.

[43] Janus Gateway. Accessed: Nov. 22, 2021. [Online]. Available:
https://github.com/meetecho/janus-gateway

[44] T. Reddy, P. Patil, D. Wing, and B. Ver Steeg, “WebRTC UDP firewall
traversal,” in Proc. IAB Workshop Stack Evol. Middlebox Internet
(SEMI), 2015, pp. 1–5.

[45] J. Lazzaro, “RFC 4571: Framing real-time transport protocol (RTP) and
RTP control protocol (RTCP) packets over connection-oriented trans-
port,” Internet Eng. Task Force, Tech. Rep., 2006. [Online]. Available:
https://datatracker.ietf.org/doc/rfc4571/

[46] L. Miniero, HTTP Fallback for RTP Media Streams, document Internet-
Draft draft-miniero-rtcweb-http-fallback-00, IETF, 2012.

[47] TC: Traffic Control. Accessed: Nov. 22, 2021. [Online]. Available:
https://linux.die.net/man/8/tc

[48] Z. Li et al., “Probe and adapt: Rate adaptation for HTTP video streaming
at scale,” IEEE J. Sel. Areas Commun., vol. 32, no. 4, pp. 719–733,
Apr. 2014.

[49] Mesh Topology. Accessed: Nov. 22, 2021. [Online]. Available:
https://github.com/rtc-io/rtc-mesh

[50] Network Emulator. Accessed: Nov. 22, 2021. [Online]. Available:
http://www.msytest.cn

[51] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson,
“A buffer-based approach to rate adaptation: Evidence from a large video
streaming service,” in ACM SIGCOMM, 2014, pp. 184–198.

[52] Z. Lai, Y. C. Hu, Y. Cui, L. Sun, N. Dai, and H.-S. Lee, “Furion:
Engineering high-quality immersive virtual reality on Today’s mobile
devices,” IEEE Trans. Mobile Comput., vol. 19, no. 7, pp. 1586–1602,
Jul. 2020.

[53] Z. Lai, Y. Cui, Z. Wang, and X. Hu, “Immersion on the edge:
A cooperative framework for mobile immersive computing,” in ACM
SIGCOMM Posters Demos, 2018, pp. 39–41.

[54] M. K. Mukerjee, D. Naylor, J. Jiang, D. Han, S. Seshan, and H. Zhang,
“Practical, real-time centralized control for CDN-based live video
delivery,” ACM SIGCOMM Comput. Commun. Rev., vol. 45, no. 4,
pp. 311–324, Sep. 2015.

[55] Z. Liu, Y. Shen, K. W. Ross, S. S. Panwar, and Y. Wang, “Substream
trading: Towards an open P2P live streaming system,” in Proc. ICNP,
Oct. 2008, pp. 94–103.

[56] F. Chen, C. Zhang, F. Wang, and J. Liu, “Crowdsourced live streaming
over the cloud,” in Proc. IEEE INFOCOM, 2015, pp. 2524–2532.

[57] Q. He, C. Zhang, and J. Liu, “CrowdTranscoding: Online video transcod-
ing with massive viewers,” IEEE Trans. Multimedia, vol. 19, no. 6,
pp. 1365–1375, Jun. 2017.

[58] H. Pang et al., “Optimizing personalized interaction experience in
crowd-interactive livecast: A cloud-edge approach,” in Proc. ACM MM,
2018, pp. 1217–1225.

[59] W. T. Ooi and R. Van Renesse, “Distributing media transformation over
multiple media gateways,” in ACM MM, 2001, pp. 159–168.

[60] E. Amir, S. McCanne, and R. Katz, “Receiver-driven bandwidth adap-
tation for light-weight sessions,” in Proc. MM, 1997, pp. 415–426.

[61] One-Way Transmission Time, Series G: Transmission Systems and
Media, Digital Systems and Networks, document G. 114, Telecommu-
nication Standardization Sector, ITU-T, 2000.

Ziyi Wang received the B.E. degree in networking
engineering from the Dalian University of Tech-
nology, Liaoning, China, in 2018. He is currently
pursuing the Ph.D. degree with the Department of
Computer Science and Technology, Tsinghua Uni-
versity, Beijing, China. His research interests include
video streaming and mobile computing.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 16,2022 at 05:23:37 UTC from IEEE Xplore. Restrictions apply.

938 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 2, APRIL 2022

Yong Cui (Member, IEEE) received the B.E. and
Ph.D. degrees in computer science and engineering
from Tsinghua University, China, in 1999 and 2004,
respectively. He is currently a Full Professor with the
Computer Science Department, Tsinghua University.
His major research interests include mobile cloud
computing and network architecture.

Xiaoyu Hu received the B.E. degree from Zhejiang
University, Zhejiang, China, in 2014. He is currently
pursuing the master’s degree with the Department of
Computer Science and Technology, Tsinghua Uni-
versity, Beijing, China. His research interests include
video streaming and mobile computing.

Xin Wang (Member, IEEE) received the B.S.
and M.S. degrees from the Beijing University of
Posts and Telecommunications, China, and the Ph.D.
degree from Columbia University, USA. She is cur-
rently an Associate Professor with the Department
of Electrical and Computer Engineering, State Uni-
versity of New York at Stony Brook. Her research
interests include algorithm and protocol design in
wireless networks, and mobile and distributed com-
puting.

Wei Tsang Ooi (Member, IEEE) received the Ph.D.
degree in computer science from Cornell University,
Ithaca, NY, USA. He is currently an Associate
Professor with the Department of Computer Science,
National University of Singapore, where he does
research in multimedia systems, distributed systems,
and computer networking.

Zhen Cao received the Ph.D. degree from Peking
University, China. He is currently a Principle Engi-
neer with Huawei Technologies Company Ltd.,
China. His research interests include sensor net-
works, security and privacy, cellular network tech-
nologies, IPv6, and SDN/NFV.

Yi Li received the B.E. and Ph.D. degrees in
computer science and engineering from Tsinghua
University in 1996 and 2000, respectively. He is
currently with Beijing Powerinfo Company Ltd., as a
CTO. His research interests include video encoding
and transmission.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 16,2022 at 05:23:37 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

